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Abstract: In the analysis of an incomplete contingency table, nonresponse models incorporating the missing 

mechanism are used to estimate nonresponses. There are three missing mechanisms, missing at random (MAR), not 

missing at random (NMAR) and missing completely at random (MCAR). The estimation results differ depending on 

the embedded missing mechanism in the nonresponse model. When the NMAR mechanism is assumed, it has been 

known that the nonresponse model has boundary solution problems. Boundary solutions are defined as the cell 

probabilities of certain columns are estimated to be zero, leading to distort estimation results. In this paper, boundary 

solution problems are reviewed with the reason, the identification of occurrence, and the method to overcome. The 

introduction of the analysis of an incomplete contingency table is also provided with the real data analysis. 
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I. INTRODUCTION 

 

A contingency table is a table that shows the distribution of categorical variables, and analysed to measure the 

association between variables, for example independence or homogeneity of variables [1]. When two variables are 

considered, a contingency table is called a two-way contingency table. Table 1 is an example of a two-way contingency 

table, and shows the distribution of newborns’ birth weight and mothers’ self-reported smoking [2, 3]. 

 

TABLE 1 TWO-WAY CONTINGENCY TABLE 

 

Birth weight Self-reported smoking 

Yes No 

< 2500 4512 3394 

≥ 2500 21009 24132 

 

When categorical variables have nonresponses, categorical data can be summarized as an incomplete contingency table. 

When there are nonresponses for one variable, the incomplete contingency table has one supplementary margin. When 

there are nonresponses for two variables, the incomplete contingency table summarizing data has two supplemental 

margins. Table 2 is examples of two-way incomplete contingency table with one supplemental margin. 
 

TABLE 2 TWO-WAY CONTINGENCY TABLE WITH ONE SUPPLEMENTAL MARGIN 

 

Birth weight Self-reported smoking 

Yes No Missing 

< 2500 4512 3394 142 

≥ 2500 21009 24132 464 

 

In the analysis of incomplete contingency tables, the purpose is to estimate nonresponses, however, it has been known 

that the occurrence of nonresponses (called missingness) depend on distinct patterns. These patterns are called the 

missing mechanism. To estimate nonresponses, the missing mechanism is embedded in a nonresponse model. 

 

Little and Rubin [4] define three missing mechanisms: missing at random (MAR), not missing at random (NMAR) and 

missing completely at random (MCAR). MAR is missing mechanism that missingness depends on the observed data, 

NMAR is when the missingness depends on the unobserved data, and MCAR is when missingness depends on neither. 

For example, when mothers do not respond to the questions about smoking because their newborn’s weight is low, then 

the missing mechanism is MAR, however, when mothers do not respond because they were smoking, then the missing 

mechanism is NMAR. When nonresponses occur regardless of birth’s weight or smoking, then the missing mechanism 
is MCAR.  
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For the nonresponse model to accommodate the missing mechanism, log-linear models have been widely employed [2, 

5, 6, 7, 8, 9, 10]. Depending on the assumed missing mechanism, nonresponse models produce different estimates. For 
convenience, we call nonresponse models incorporating MAR, NMAR, and MCAR mechanism MAR model, NMAR 

model and MCAR model, respectively. 

When the missing mechanism is specified as NMAR, it has been known that nonresponse boundary solutions often 

occur in ML estimation [6]. In a two way incomplete contingency table with one incomplete response variable and an 

observed covariate (hereafter I × J × 2 incomplete contingency table), boundary solutions under the NMAR model take 

forms such that the cell probabilities concerned with nonresponse are estimated to be all zero’s for certain values of the 

response variable [6, 9]. 

In this paper, it is reviewed that the analysis of an incomplete contingency table and boundary solutions under the 

NMAR model which we often encounter in the real data analysis. In Section 2, log-linear models depending on each 

missing mechanism and the estimation method by EM algorithm are introduced. In Section 3, examples of boundary 

solutions and their properties are reviewed. Section 4 includes conclusion. 
 

II. LOG-LINEAR MODELS  

 

Let X be a completely observed categorical variable with I categories, and Y be an incomplete observed categorical 

variable with J categories. When Y is observed, let an indicator variable of missingness denoted by R be 1, and R is 2 

when Y is not observed. Then, the full array of 𝑋, 𝑌, and 𝑅 produce a 𝐼 × 𝐽 × 2 table with cell counts 𝒚 = {𝑦𝑖𝑗𝑘 } where 

𝑖 = 1, ⋯ , 𝐼, 𝑗 = 1, ⋯ , 𝐽, and 𝑘 = 1,2. However, we can only observe 𝒚𝒐𝒃𝒔 = ( 𝑦𝑖𝑗 1 ,  𝑦𝑖+2 ) where the symbol “+” in 

the subscript indicates the summation over the corresponding subscript. Under the assumption that the observed cell 

counts follow a multinomial distribution with cell probabilities 𝝅 = {𝜋𝑖𝑗𝑘 } and a given total count 𝑁 =    𝑦𝑖𝑗𝑘𝑘𝑗𝑖 , a 

log-linear model is linked to cell probabilities. That is, under the multinomial distribution assumption, 𝜋𝑖𝑗𝑘 =

𝑚𝑖𝑗𝑘 / 𝑚𝑖𝑗𝑘𝑖𝑗𝑘  where 𝑚𝑖𝑗𝑘 = 𝐸(𝑦𝑖𝑗𝑘 )  and 𝑚𝑖𝑗𝑘  is modelled by a log-linear model [1]. Depending on the 

predetermined missing mechanism, we have three types of log-linear models as followings [3, 6, 9]. 

 

MAR model    : 𝑙𝑜𝑔 𝑚𝑖𝑗𝑘 = 𝜆𝑋
𝑖 + 𝜆𝑌

𝑗
+ 𝜆𝑅

𝑘 + 𝜆𝑋𝑌
𝑖𝑗

+ 𝜆𝑋𝑅
𝑖𝑘  

NMAR model : 𝑙𝑜𝑔 𝑚𝑖𝑗𝑘 = 𝜆𝑋
𝑖 + 𝜆𝑌

𝑗
+ 𝜆𝑅

𝑘 + 𝜆𝑋𝑌
𝑖𝑗

+ 𝜆𝑌𝑅
𝑗𝑘

 

MCAR model : 𝑙𝑜𝑔 𝑚𝑖𝑗𝑘 = 𝜆𝑋
𝑖 + 𝜆𝑌

𝑗
+ 𝜆𝑅

𝑘 + 𝜆𝑋𝑌
𝑖𝑗

 

 

In the MAR model, the inclusion of 𝜆𝑋𝑅
𝑖𝑘  means that the missingness of 𝑌 depends on 𝑋. The opposite is true for the 

NMAR model while the MCAR model depends on neither. Note that  𝜆𝑋
𝑖

𝑖 =  𝜆𝑌
𝑗

𝑗 =  𝜆𝑅
𝑘

𝑘 =  𝜆𝑋𝑌
𝑖

𝑖 =  𝜆𝑋𝑌
𝑗

𝑗 =

 𝜆𝑋𝑅
𝑖

𝑖 =  𝜆𝑋𝑅
𝑘

𝑘 =  𝜆𝑌𝑅
𝑗

𝑗 =  𝜆𝑌𝑅
𝑘

𝑘 = 0 for the identification of coefficients.  

To obtain ML estimates of the coefficients in a log-linear model, EM algorithm has been widely used [6, 11]. Under the 

assumption that 𝑦𝑖𝑗 2s are observed, we have a following complete log-likelihood. 

ℓ𝑐 =   𝑦𝑖𝑗 1𝑙𝑜𝑔𝜋𝑖𝑗 1
𝑗𝑖

+   𝑦𝑖𝑗 2𝑙𝑜𝑔𝜋𝑖𝑗 2

𝑗𝑖

 . 

 

For a fixed 𝑖, we also assume that 𝑦𝑖𝑗 2’s follow multinomial distribution with a given total count 𝑦𝑖+2. EM algorithm 

has two steps which are E-step and M-step, and these steps are repeated recursively until the stoping rule is satisfied 

[12]. At the 𝑡-th iteration, we have following E-step and M-step. In E-step, the expectation of the above complete log-

likelihood is calculated as following: 

𝐸 ℓ𝑐 𝝀
𝑡−1 , 𝑦𝑜𝑏𝑠  =   𝑦𝑖𝑗 1𝑙𝑜𝑔𝜋𝑖𝑗 1

𝑡−1

𝑗𝑖
+   𝐸 𝑦𝑖𝑗 2 𝝀

𝑡−1 , 𝑦𝑖+2]𝑙𝑜𝑔𝜋𝑖𝑗 2
𝑡−1

𝑗𝑖

 

 

where  𝝀𝑡−1 is a vector of 𝜆’s from M-step at the 𝑡 − 1 th iteration, and 

𝐸 𝑦𝑖𝑗 2 𝜆
𝑡−1 , 𝑦𝑖+2] = 𝑦𝑖+2

𝜋𝑖𝑗 2
𝑡−1

 𝜋𝑖𝑗 2
𝑡−1

𝑖𝑗

   

 

by the multinomial assumption. In M-step, 𝐸 ℓ𝑐  𝝀
𝑡−1 , 𝑦𝑜𝑏𝑠   is maximized with respect to 𝝀 by optimization methods 

such as Newton-Raphson method, and set 𝝀𝑡  equal to the maximizer of 𝐸 ℓ𝑐 𝝀
𝑡−1 , 𝑦𝑜𝑏𝑠  . These two steps are repeated 

until the difference of two adjacent log-likelihood values are less than an arbitrary positive value.  

In the analysis of an incomplete contingency table under this framework, some ongoing issues have been arisen, the 

assessment of the missing mechanism, non-identification problem, and boundary solution problem under the NMAR 



IJARCCE ISSN (Online) 2278-1021 
ISSN (Print) 2319 5940 

  
International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 Certified 

Vol. 6, Issue 8, August 2017 

 

Copyright to IJARCCE                                                         DOI10.17148/IJARCCE.2017.6841                                                            242 

model [13, 14]. Since we very often encounter the boundary solution problems practically, in this paper, boundary 

solution problems under the NMAR model are discussed. 
 

III.  BOUNDARY SOLUTIONS OF THE NMAR MODEL 

 

In the analysis of an incomplete contingency table, boundary solutions are generally defined as 𝜋 𝑖𝑗 2 = 0 for at least one 

combination of (𝑖, 𝑗) [6]. Under the NMAR model, it has been known that boundary solutions take a following form: 

𝜋 +𝑗2 = 0 for at least one and at most (𝐽 − 1) values of 𝑗 [9]. Table 3 presents the estimation results under the NMAR 

model for a data provided in Table 2. 

 

TABLE 3 BOUNDARY SOLUTIONS IN A 2 × 2 × 2 CONTINGENCY TABLE 

 

 Smoking (𝑹 = 𝟏) Smoking (𝑹 = 𝟐) 

𝐘 = 𝟏 (Yes) 𝐘 = 𝟐 (No) 𝐘 = 𝟏 (Yes) 𝐘 = 𝟐 (No) 

X = 1 (< 2500) 4546 3394 108 0 

X = 2 (≥ 2500) 20975 24132 498 0 

 

As illustrated in Table 3, when the NMAR model is applied, all nonresponses at Y = 2 are estimated to be 0. That is, 

boundary solutions occur at Y = 2. In terms of 𝛌 in the NMAR model, boundary solutions can be expressed as |λ YR

jk
| =

∞ [9]. The occurrence of boundary solutions distort the estimation results by allocating none value to certain categories 

while assigning all nonresponses to the other categories regardless of the true value. In addition, under the occurrence 

of boundary solution, ML estimates do not provide a perfect fit to observed data even though the saturated NMAR 

model is used.  
Some researchers explained the reason boundary solutions occur [7, 8, 9]. When data lie out of the parameter space, 

ML estimates lie on the parameter space closest to data. Sometimes, ML estimates can lie on the edge of the parameter 

space, in this case, boundary solutions occur. 

The practical problem about boundary solutions is whether π +j2 = 0  is from boundary solutions or not. Without 

suffering from boundary solutions, nonresponses of specific columns also can be estimated to be 0. Thus, to judge that 
boundary solutions occur or not, the sufficient conditions for the occurrence of boundary solutions have been suggested. 

Baker and Laird [6] provided a tool for the identification of occurrence of boundary solutions for a 2 × 2 × 2 

contingency table. They defined response odds as ωj = y1j1/y2j1 for j = 1, 2 and nonresponse odds as ω = y1+2/y2+2. 

They showed that boundary solutions occur when ω  lies out of the interval between ω1  and ω2 . By using their 
conditions, boundary solutions can be checked without estimation through the EM algorithm. Park et al. [15] extended 

the sufficient conditions proposed by Baker and Laird [6] to a I × I × 2 × 2 contingency table. Note that, for a general 

shape of incomplete contingency table, denoted by a I × J × 2 × 2 contingency table, the conditions for the occurrence 

of boundary solutions have not been provided.  

To overcome boundary solutions under the NMAR model, various Bayesian approaches have been suggested. Foster 

and Smith [16], Nandram et al. [17] and Green and Park [18] proposed hierarchical Bayesian model by using MCMC. 

Park and Brown [19] and Choi et al. [11] proposed Bayesian methods by using EM algorithm. Park and Brown [19] 

used empirical priors for cell probabilities, and Choi et al. [11] used a mixture of constant and empirical priors. Park 

and Brown [19] imposed Dirichlet priors to cell probabilities given by 

  π
ij1

δij 1
π

ij2

δij 2

ji

 

where  the δijk s are defined as  

δij1 = 0 , δij2 = p
yij1

y++1

 

  
and p is the number of parameters. Table 4 presents the estimates by using Park and Brown [19]. As expected, some 

values are allocated to Y = 2 unlike the result in Table 3.  

 

TABLE 4 ESTIMATES BY USING PARK AND BROWN METHOD 

 

 Smoking (𝐑 = 𝟏) Smoking (𝐑 = 𝟐) 

𝐘 = 𝟏 (Yes) 𝐘 = 𝟐 (No) 𝐘 = 𝟏 (Yes) 𝐘 = 𝟐 (No) 

𝐗 = 𝟏 (< 2500) 4546 3399 90 12 

𝐗 = 𝟐 (≥ 𝟐𝟓𝟎𝟎) 20975 24127 416 87 
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Rather than using these Bayesian method, some researchers recommend to use other models such as the MAR model. 

Baker et al. [20] presented that boundary solutions under the NMAR model likely indicate the model misspecification.  
 

IV. CONCLUSION 

 

In this paper, first, the overview of the analysis of an incomplete contingency is introduced. To estimate nonresponses, 

nonresponse models incorporating missing mechanism are used which are the NMAR, MAR and MCAR models. To 

obtain ML estimates, EM algorithm is used. However, we often encounter boundary solution problems when the 

NMAR model is used.  

Boundary solutions are defined as the cell probabilities of certain columns are estimated to be zero, and can distort the 

estimation results. To judge whether boundary solutions occur or not, the sufficient conditions were provided. By using 

these conditions, boundary solutions can be checked without using EM algorithm.  

To overcome boundary solutions, various Bayesian methods have been suggested. In this paper, real data analysis by 
using ML method and Park and Brown method are performed, and show that boundary solutions occur under ML 

estimation, and do not under Park and Brown method. One thing noteworthy is that, when boundary solutions occur 

under the NMAR model, it would be appropriate to use another model such as MAR model as described by Baker et al. 

[20]. 
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